

- (iv) What do you mean by mean free path of free electron ?
- (v) What is Bloch theorem ?
- (vi) What is concept of hole ?
- (vii) Explain the term μ -space.
- (viii) Define thermodynamic probability.
- (ix) Calculate the r.m.s. velocity of H_2 at 27°C.

Given :

- (1) $k = 1.38 \times 10^{-23}$ joule/deg and
- (2) mass of H_2 molecule = 3.34×10^{-27} kg.

- (x) What is black body ?
- (xi) What are bosons ? Which statistics is used to study them ?
- (xii) Find the Fermi temperature for the valence electrons in Copper.

Given :

- (1) $E_{F(0)}$ for Cu = 7.03 eV and
 - (2) Boltzmann's constant, $K = 1.38 \times 10^{-23}$ J/K.
- $1 \times 10 = 10$

TKN/KS/16/5885

**Bachelor of Science (B.Sc.) Semester—V (C.B.S.)
Examination**

**501 : ATOMIC PHYSICS, FREE ELECTRON
THEORY AND STATISTICAL PHYSICS**

**Paper—I
(Physics)**

Time—Three Hours] [Maximum Marks—50

- N.B. :—** (1) All questions are compulsory.
 (2) Draw neat diagrams, wherever necessary.

EITHER

1. (A) Explain briefly :
 - (i) Spatial quantization and
 - (ii) Spin of electron.

Name the four quantum numbers of an electron.

3+2
- (B) (i) Discuss quantum mechanically the normal Zeeman effect. 3
- (ii) Find the separation between the adjacent components of wavelength 4500 Å if it is placed in a magnetic field of flux density 0.3 T. 2

OR

- (C) Obtain an expression for energies of free electrons on the basis of Sommerfeld's quantum free electron model. 2½
- (D) The density of aluminium is 2.7 gm/cm³, atomic weight is 26.9 and the number of electrons per atom is 3. Calculate the Fermi energy. 2½
- (E) Distinguish between conductors, semiconductors and insulators on the basis of band picture of solids. 2½
- (F) Write short notes on Hall effect. 2½

EITHER

3. (A) Write short notes on :
 (i) Accessible and inaccessible states,
 (ii) Macro and micro states. 2½+2½
- (B) (i) Derive Maxwell-Boltzmann distribution law. 3
 (ii) Find the most probable speed of Nitrogen molecules at 27°C.
 Given :
 (1) molar mass of Nitrogen molecules = 28×10^{-3} kg/mol and
 (2) gas constant, R = 8.31 J/mol K. 2

OR

- (C) Derive Boltzmann's entropy relation for an ideal gas. 2½

- (D) What are the limitations of Maxwell-Boltzmann method ? 2½

- (E) On the basis of Maxwell Boltzmann distribution law show that for the molecules of an ideal gas the average speed is given by :

$$\bar{V} = \sqrt{\frac{8kT}{\pi m}}. \quad 2\frac{1}{2}$$

- (F) At what temperature will the mean speed of hydrogen molecules be the same as that of Nitrogen molecules at 135°C.

Given :

- (i) Molecular weight of N₂ = 28 and
 (ii) Molecular weight of H₂ = 2. 2½

EITHER

4. (A) Obtain an expression for Bose-Einstein distribution law and derive Planck's radiation formula from the law. 3+2
- (B) (i) Discuss the postulates of quantum statistics and derive its formula. 3
 (ii) Fermi energy of conduction electron in silver is 5.48 eV. Calculate the number of such electrons per cm³.
 Given :
 (i) h = 6.62×10^{-27} erg-sec and
 (ii) 1 eV = 1.62×10^{-12} erg. 2

OR

- (C) Explain the Stern-Gerlach experiment and indicate its importance in atomic physics. $2\frac{1}{2}$
- (D) State and explain Pauli's exclusion principle. $2\frac{1}{2}$
- (E) What are the salient features of Stark effect ? $2\frac{1}{2}$
- (F) Calculate the magnetic field in order to observe the anomalous Zeeman effect of D lines of wavelengths $\lambda_1 = 5896 \text{ \AA}$ and $\lambda_2 = 5890 \text{ \AA}$. $2\frac{1}{2}$

EITHER

2. (A) Derive the equations for electrical conductivity and

thermal conductivity. Prove that $\frac{K}{\sigma T} = \frac{\pi^2}{3} \left(\frac{k}{e} \right)^2$.
 $2+2+1$

- (B) (i) Explain qualitatively the formation of energy bands on the basis of Kronig-Penny model.

3

- (ii) A rectangular metal slab of thickness 2 mm carries a current of 100 mA in the direction parallel to its length. A uniform magnetic field of flux density 0.5 Wb/m^2 applied to the slab perpendicular to its length produces a maximum Hall voltage of 8 mV. Calculate Hall coefficient and charge carrier density. 2

OR

- (C) Explain Bose-Einstein condensation. $2\frac{1}{2}$
- (D) Distinguish between B-E and F-D statistics. $2\frac{1}{2}$
- (E) Write short notes on negative temperature state. $2\frac{1}{2}$

- (F) Treating liquid Helium (He-I) as an ideal B-E gas, find the critical temperature T_B at which there is a transmission of liquid He-I to liquid He-II.

Given :

- (i) molar volume of liquid He at the critical temperature $= 27.4 \times 10^{-6} \text{ m}^3$,
- (ii) mass of He atom $= 6.65 \times 10^{-27} \text{ kg}$.
- (iii) Avogadro's number, $N = 6.63 \times 10^{23}$ per mole.
- (iv) Planck's constant, $h = 6.63 \times 10^{-34} \text{ JS}$ and
- (v) Boltzmann's constant, $k = 1.38 \times 10^{-23} \text{ J/K}$. $2\frac{1}{2}$

5. Attempt any **TEN** questions (1 mark each).

- (i) What are shells and subshells ?
- (ii) Calculate the value of spin magnetic moment from the given data :
 $e = 1.6 \times 10^{-19} \text{ C}$, $h = 6.62 \times 10^{-34} \text{ J-S}$ and
 $m = 9.1 \times 10^{-31} \text{ kg}$.
- (iii) Distinguish between π and σ components in Stark effect.